
PMM U.S.S.R.,Vol.44, pp.357-362 
Copyright Pergamon Press Ltd.1981.Printed in U.K. 

0021-8928/81/3 0357 $7.50/O 

UDC 539.3: 534.1 

ASYMPTOTIC ANALYSIS OF WAVE PROBLEMS FOR A CYLINDRICAL SHELL* 

A. M. PROTSENKO 

The asymptotic solutions of elasticity theory equations for long and short-waves 

being propagated along the generator of a closed circular cylindrical shell, the 

normal waves, are examined. Two problems are investigated: Th Cauchy problem for 

an infinite shell and the problem of edge perturbation propagation in a semi-infinite 

shell. A general asymptotic solution is constructed for both problems. The asymp- 

totic parameter is the shell wall thickness or the number of waves across this thick- 

ness. In the first problem, the frequency spectrum is determined, and in the second, 

the wave spectrum. Operators of the fundamental solutions are constructed for the 

problems considered. 

On the whole, the solutions for shells are close to the solution of an analog- 

ous problem for a solid cylinder /l-33/, and especially to the results of /3/ in 

which quadratic bundles of operators generated by the problem were investigated. 

Below the asymptotic solution is constructed by analogy with /4/, but the order of 

the approximation is higher. 

The results represented differ from the extensively utilized solutions based 

on the Timoshenko equations /5,6/. This refers expecially to the problem of edge 

perturbation propagation. 

By using asymptotic representations, the quadratic bundle of operators analog- 

ous to /3/, are reduced to quadratic bundles of matrices whose spectral properties 

areinvestiqatedbyusing algebraic methods and perturbation theory /7,8/. 

1. Formulation of the problem. Let us introduce the notation: R is the radius 

of the middle surface, 2h is the shell wall thickness, x 11 ill, a and c are the velocities 

of volumetric and shear wave propagation, and v := cz la", and y1 my y-1. 

A cylindrical r,O,s coordinate system is introduced, as is the corresponding displace- 

ment vector fj == (tL,iu> 20)“. Because of the cyclic periodicity the operator & is replaced by 

the symbol -in, where n is an integer. This is actually a Fourier series in 0. 

We construct the solution of the Cauchy problem in the form 

Here O,< a~< 1 determines the degree of approximation, s (z, t, h) = act - hz is the phase of 

the wave, where hRa-Wa is the wave number, and w (h)cRa-‘Is-~ is the frequency spectrum 

which we will determine. 

The solution of the second problem on edge perturbation propagation in 

shell (z :> 0) will be constructed in an analogous form 

a semi-infinite 

The expression for the wave phase s(z,1,tn) remains the same as for (1.1) 

struct the wave spectrum h(o), 01 E (-CO,~). We shall henceforth consider the 

but we will con- 

spectra 01 (h) 

and 7" (w), exactly as the amplitude ga, to depend everywhere on n as a parameter. The 

amplitudes fia (c, w) and 6a. (5, 1) themselves will be considered regular functions of 5. 
Let us introduce the dimensionless coordinate p : ,.R"-l/,-U and let the prime denote 

differentiation with respect to it. On the basis of (1.1) and (1.2) we can replace the oper- 

ators cl, and d, by the symbols icmRa-‘Ka and - ihRa-‘hia , after which the Lam& equations 
will berepresented in the rather unusual form 

(1.2) 

, C = diag (rl, I, I), S : tliag (1, 1, y,) (1.3) 
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Let us introduce a vector equivalent to the stress vector in the plane r = const 

(1.4) 

(1.5) 

Using the variable {) in place of r and replacing d, by its symbol, we obtain 

No stresses on the free surfaces r=:R&h or p YZ X-a f “fa which are written as 

ga ’ + (A / p - ihlqg, I!, I’ -- x-” i_ x1-a (1.6) 

is the boundary condition for the ordinary differential equation (1.3). 

In conjunction with the boundary conditions (1.6), equations (1.3) form a spectral prob- 
lem for a quadratic bundle of operators. On the basis of results /3/ for a simply-connected 
domain, we consider the spectra w(h) and h(o) to have a single condensation point at in- 
finity. In turn, this permits the construction of different approximations for the quadratic 
bundle of operators at regular points of the spectrum. 

2. Long-wave approximation. Let us take CL -= 0, and let us consider I and co 
to be sufficiently small in absolute value. Then (1.3) is defined in a narrow domain pi 
(1 - x, 1 i-x) and we take the same approach as in /4/. To do this we expand t(p;) in a 
Taylor series around the middle surface (p -= l), while keeping up to four terms in the series. 
We combine conditions in the follows form: 

t (I+ x, .) ! T (I - %, .) = 0, t (1 -I- x, .) - T (1 - x, .)=O 

Now combining the expansions in the Taylor series, we obtain two equations 

7 (1, .) AL '/,X2? (1. .) _ 0 (y,‘), z’ (1, .) 1~ ‘i&Y (1, .) 7 0 (x”) (2.1) 

Let us introduce the notation JJ!; m= go'"J(l. .) and by using it and (1.5) we solve (2.1) for 

P3 and p4 

p. ~: -2x-2 (p 1 ~- Np)) 0 (1). pa == A;%-* (ps m;m Up,) - .4/J, 1 0 (I), A1( -= .1 - iiLB 
(2.2) 

We differentiate (1.3) once and then twice with respect to p, referring the result to 
p = 1 

cp, -I- 02p, $ . . =: Cl, cp4 .: w”pz -= 0 (2.3) 

Components with the lowest terms are omitted in these equations. From (2.2) and (2.3) we 
obtain equations in p1 and pz(E is the unit 3 X 3 matrix) 

(E - '/Go2x?c-')pz :: _-.lfp, -:. /4:,, -,- 0 (x2), (E - '/,(02x*c-')p, = -Jlpo -i 0 (x') (2.4) 

Let (di(’ (< 1, which is in complete agreement with the assumption about the smallness of o 

and even weakens it substantially. For instance, 1 c?x' 1 can be considered a small number 
and then (2.4) can be solved as follows: 

p1 = -(E + Vzw2xV_?)jlilpg -1. 0 (x" tm ("*ila), pz = (E + ‘i, dx*c-‘) (Ap, - Mp,) + 0 (x2 $m dj(“) (2.5) 

There now remains to substitute the expressions obtained into (1.3), referring it to 

p = 1. But first, p1 in the second expression in (2.5) should certainly be replaced by P,, 

by using the first expression. We finally obtain the system of linear algebraic equations 

IT, (1) + 012 (E + "/,2TI(,) (h))lpo r= 0 (112 in d%“) (2.6) 

Here Tj (h) (j = 0, 1) are quadratic bundles of matrices 

Tj (A) = Pj - ihKj - h2Lj, j = 0, 1 (2.7) 

We present just the structure of the bundle T,,(i) 

--'1(1-JJ) &7 (1-y) 0 -211 - 2y) 

PO= h(l-y) -4tP(l--y) 0 I? (3 - 41’) 1 L, : tliag (0, 1, 4 (1 - y)) 

0 0 - 172 - 7) (3 - 417) 0 I 
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The bundle T1c4) is formed as follows: 

To (h) :: I/, I2 (CM - N)C-‘M -i IV* + Al, N = D - ihG 

The matrix coefficients of the bundles To and Tlcr) are real matrices. The subscript (4) 

gndicates the order of approximation of the boundary conditions (1.6). The fact is that the 

order of the approximation 0(x”) will result in an analogous result, in which T1(:!) (h) will 

replace T,(J) (A) - For this it is sufficient to take 7"' = 0 in (2.1). An approximation 

0(x’) is used in /4/ and a simpler axisymmetric problem is solved. For such an approximation 

T1cL) will be the zero-th matrix. The matrix T1c3) is constructed thus: 

T,(.j, (h) = 'i, (CM - N)C-‘.V 

The bundle 7',(h) is comprised of the symmetric matrix P,, the skew-symmetric matrix 

K0 and the diagonal degenerate matrix L,. 

Therefore, for real h the bundle T,, is Hermitian, negative-definite, and h is singular. 

The bundles T1c3) and T1(d) do not possess the property of being Hermitian. Because x2 is a 

small number, perturbation theory can be used, but it would be desirable to reduce the bundle 

(2.6) to an analytic perturbation of the bundle T,,(h) m= T,, (h) f 02E. This can be done by 

linear interpolation by introducing the bundle 

Let us require that such a bundle be Hermitian. This can always be done in the general case. 

For y = '1, (the Poisson's ratio equals 0.25) the condition that T,(k) be Hermitian will be 
k, E _-"I9 and k, = 1. In fact, there is an extrapolation here towards reducing the order of 

the approximation of the boundary conditions (1.6), which became 3kl + 4k, z= 7/3. But here 

the general order of approximation of the operator, 0 (x") I was conserved. 

Finally, discarding small terms in the right side in (2.6) and introducing the bundle 

T1 (A) , we arrive at the spectral problem for the analytically perturbed quadratic bundle of 

matrices 
T, (h) = T, (1) i a? [E -t x22’, (a)] (2.8) 

For y ='I3 the bundle T, is represented as follows: 

T,(h)=& 

I 

2 + 36n2 + 3Gh2 - IOrl - ih 

--1Oi? 18-W 2ihu 
ih -2ik/ -8hZ 

3. The Cauchy problem. Let us examine this problem in the long-wave band when the 

initial data 

are given. In turn, this means that the initial data are given in the form of an inverse 

Fourier transform in the coordinate z.: p,, (h) = m0 (--h); o @)pO (h) = @I (--h), where m0 (It) and 
@,,(h)are the Fourier transforms for (Pan and (Pm - For this reason the frequency spectrum 

h(o), hi (--oo,m)should be constructed. 

In addition to the bundle T,(h) in (2.8), we consider the bundle To,@) = I‘, (h) + db’. 
For any real h the bundle T, (h) is Hermitian and negative-definite. Therefore, there are 
three eigenvalues oOj"(h)> 0 to which the unitary matrix of eigenvectors Q(h) corresponds. 

The bundle T,(h) can be considered as an analytic perturbation of the bundle T,,(h) /7/. 
Then the estimate 

0j2 (h) = 00,’ (1) [1 - X2ejTT, (h)ejl + 0 (Ooj4X4) (3.1) 

holds for the eigenvalues of this bundle Oj' (h) , where ej = ej (h) is the eigenvector of 

Too (h) or the j -th column of the matrix Q(h). 

In the limits 0(04X4) the eigenvectors of both bundles agree. We select the positive 

values of Oj (h), i = it 2v 3 and we form the diagnonal matrix 

Q (h) = diag lo, (A), o2 (h), o3 @)I (3.2) 

Now the operator (1.1) is constructed in the form of the diverging waves 

From initial data in the form CD, and @I we determine 'P+ and 'P- and finally the general 
solution is constructed as a convolution 

q,, (R, n, 2, t) = Dn’ (z, 4 * ‘eon (4 + Dn (2, 4 * ‘PM (4 (3.4) 

D, (z, t) = & 1 exp (+-) Q (h)sin ($ Cl(h)) x !A-’ (I.) Q*(h) da 
-a 
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The dependence on n in the last expression under the integral should be understood as on a 

parameter. 

4. Problem of edge perturbations. We solve this problem, as the preceding one 
has been, in the low-frequency band of the perturbations applied to the edge z=Oin the 

form q,, (X, II! 0. t) x f,, (f) with the spectral function p,,(o), 0) E (-co, m). To construct the 

solution, we determine the wave spectrum h(w) for which we consider the bundle T,, (h) in 
the following form: 

To (h) - p - ihI{ - h2L, I. == L, ~, "?x'L,, P :~ I’,, -I~ or’fi T CCI’X~~‘~, 11’ I%‘, + OI’X’K, (4.1) 

The characteristic equation is the bicubic equation 1 T,(h) 1 = (1, that has six roots with 

possible multiplicity takenintoaccount, that are disposedsymmetrically relative tothe real and 

imaginary axes of the complex plane. Only three roots h, (o), j : i. 2.3, located in the 
positive part of the real axis and opening into the lower complex half-plane, satisfy the 

radiation conditions. 

Let a normal Jordan form of the :, ‘< :: matrix J (‘(11) correspond to these roots. This 
matrix is constructed by means of elementary divisors of the bundle T,,(k). Let us form the 

G Xcj matrix .r6 = diag (J(o), --J (co)), and let us construct an equivalent transformation of 

the bundle I',, (il). The equivalent transformation of the linear bundle *r6 - h EG corresponds 

to it, where E6 is the 6 s 6 unit matrix. 

Let us introduce the auxiliary vector I in three-dimensional complex space, and let us 

convert the spectral problem for 7',, in the form (4.1) into a spectral problem for the linear 

bundle of Ii ci matrices 

(4.2) 

For 1 I, 1 fO this problem is equivalent to the problem about the spectrum of the matrix 

Here 1 r, - hE,I = - /L 1-l / T,(h) I. It hence follows that there exists a nondegenerate trans- 

formation U independent of h such that U.I,!Y 7= To /a/. 

Let X(o) denote a 3 X 3 matrix of eigen- and associated vectors for J(o). Then 

X, = diag(X (a), -X(o)) will be the matrix of eigen- and associated vectors for J, , and 

Y, = ux, will be the same matrix for To. 

Only the upper half of the matrix Y, , the three upper rows, will correspond to the 

vector p0 while the rest will correspond to the vector 2. Only the first three columns of 

1' B will correspond to the eigenvalues satisfying the radiation conditions. Consequently, 

only the left upper 3 :,: 3 block of the matrix Y,, to be denoted by y (0) I should be con- 

sidered eigenvectors of the bundle T,,. This matrix is represented in the form Y (w) = 

Q (0)X (o), where Q (w) is a 3 X 3 matrix satisfying the equation 

Z'Q --- iKQ/ (0)) - I;Qd2 (01) m= 0 (4.3) 

The nondegenerate solution of this equation exists to the accuracy of the similarity trans- 

formation /8/. This latter circumstance turns out to be negligible for the subsequent con- 

struction. 

Now (1.2) can be written thus: 

The function I$, is determined from the boundary condition for z--o, and the final result is 

written in the form of a convolution in t: 

qo (R, n, z, t) ~= D,* (z, t& f, (t) , I),* (z, 1) = & ‘s cxp (i +) Y (0) enp [ - i T] Y-’ (co) do, (4 *4) 

-e_ 

The subscript n indicates dependence of the integrand on n as on a parameter. 

An investigation of the bundle T,, 0~) as an operator in which h is replaced by iR& 

is of special value. In this case the equation for r,(h)po is a singular perturbation of the 

equation (To (3,) + dElp, = 0. The fact is that the characteristic equation1 T, (h) I- (02Ej = 0 is 

a biquadratic with the roots + h,, (0). &l, (0). We consider the roots with the plus sign 

satisfy the radiation conditions. The corresponding roots of the bundle T, (A) are a regular 

perturbation of the roots h,, and ho, and satisfy the estimate 

1 hj' (0)) - h,]ji (W) 1 = 0 (Wax'), j = 1, 2 
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The third root in the characteristic equation, to be denoted by *h, (0) is a consequence 

of the singularity, and is written thus in general form: 

X,2 (0) = 2 (1 - y)x-Z (02 - n") Lo* - 4 (1 - y)l [UP - 4 (1 - VI b’ 7 I)1 + 0 (1) 
Therefore, for n> 1 and small o this root has a large imaginary part, which means the 

formation of a rapidly damped wave in a narrow boundary layer zone around z -0. However, 

for relatively large o (on the order of IZ), the formation of slow undamped waves is pos- 

sible. 
Still another singularity appears for multiple h, = h,. Then a component containing z 

appears in the matrix exponential, and the phenomenon of quasiresonance will be observed in 

the wave pattern. This is characterized by the fact that the amplitude maximum will be at a 

certain distance from the site of application of the perturbation, and will subsequently drop 

exponentially. 

5. Short-wave asymptotic. In the short-wave band h and o are sufficiently large. 

Hence, we take CL= 1 to construct the solution in the form (1.1) and (1.2), but the bound- 

ary conditions (1.6) will here be given for p = x-1 f 1. In this case the Taylor series ex- 

pansion does not yield a satisfactory result for a small number of terms in the series. Hence, 

we go over to the new argument P' = p - x-1. We represent (1.3) and the boundary conditions 

(1.6) as follows: 

Cg," - i?.Gg,' - h*Sg, i 02g, = 0 (x2), g,’ - ihBg, = 0 (x), P’ = tl (5.1) 

In such a formulation, the boundary conditions which have an error O(x) assure compliance 

with conditions (1.6) with an error 0(x2). Discarding the small terms in the right side of 

the operator (5.1), we arrive at the spectral problem for the operator describing wave prop- 

agation in an unbounded plate of thickness 2h. The solution of such a boundary value 

problem for an ordinary differential equation will be constructed in the form g, 7 esp (pp'). 
This results in such a characteristic equation 

1 p2C - ihpG - b2S + w*E 1 = 0 

Here there are six roots in all 

Pl?d 2 = a2 - yw2, pe,52 = pJ = h2 - 02 

We construct the general solution in the form 

gl=exp q q++exp ---<c ‘p_, L=r--R, V = diag(pi, p2, PS) 
( 1 ( 1 

(5.2) 

Hence substituting (5.2) into the boundary conditions results in a homogeneous system 

of equations 
Ze'cp, - Ze-Vcp_ = 0, Ze-'.cp+ - ZeVcp_ m= 0, Z = V - ihR, % == V + 3.B 

One of the solutions of the characteristic equation of such a system is p2 = 0 or h, = (0. 
This corresponds to a shear wave in the plane r m= const being propagated at its natural vel- 
ocity e. Two other solutions are obtained for o-+ m from the equation IZI=IZI-0. 
This is the equation for Rayleigh waves. However, we obtain the equation in the form 

1 e[ %,-‘Z,eu - e-KZ,-lZ,e-u ( = 0, U : tliag (r/h" - yo2, VA" - 09) 

Z,=U-iirZB,,. Z,=lJ+ihB,, I&l= l~,I#O~ 

for not extremely high frequencies. This transcendental equation always has one real posit- 
ive solution a,* (0) > YOZ. As regards the other solution a, (0) I it can be a complex-valued 
function. The latter constructions do not differ essentially from those presented Sects. 3 

and 4. 

6. Concluding remarks. To a known error, asymptotic solutions permit the construc- 
tion of the solution for any initial data and edge perturbations. A particular case is the 
axisymmetric problem when n=O, considered earlier in /4/. The general operator for II- 0 
is split into two in the solutions constructed. One describes normal waves, and the other 
torsion waves. The results agree qualitatively with the solution for a continuous cylinder 

/3/. 
Let us examine the agreement with an analogous solution on the basis of the Timoshenko 

equations /5,6/. We limit ourselves only to the axisymmetric case (n- 0) and we present two 
dispersion equations, obtained above and represented in /6/. We omit the regular perturba- 
tion of the coefficients by retaining just the singular perturbation for a higher degree of 
2 (v = ':a) 

(02 - 2"?) lhV,o2r? - A*4 (5 - :!o") + 02 (30' - 8)) = 0 (6.1) 

An analogous equation borrowed from /6/ and reduced to the notation used above is: 



362 A. M. Protsenko 

(ey - h'))hef;4%? / !I ~ ).'802xz / 3 - 124 (5 ~ 20") + w? (302 ~~~ S)] z 0 (6.2) 

In both cases the first factor corresponds to the torsion problem, and the characteristic 

equation for the normal waves is contained in the brackets. 

For the Cauchy problem, the frequency spectrum w(h) agrees in practice in both equations, 
the difference is on the order of 0(x2). But the error in (6.1) is 0 (x" i- o"y.') with respect 

to the actual spectrum. 

There are substantial differences for the wave spectrum of the edge perturbation problem. 

There are two roots in (6-l), k,(w) and h, (0)) , where h,(o) is the regular root and As (0) 
is the singular root. Let us recall that the root h,L~ 0 correspond to torsion and is 
identical for (6.1) and (6.2). Hence, the problem considered above for the edge perturbation 
is solvable for any conditions at the end z 0. 

In addition to h,- w in (6.2) there is the regular solution h,'-11)4e'1 x (302 -~ R) / (“e -~ 5). 
which agrees with the analogous solution for (6.1). There is still another pseudoregular 

solution h,? :'/,w' ~:. 0 (x2). But there is still another singular solution also h,? = ~':'(a%~) I- O(l), 

which agrees completely with the eighth order equation (6.2). Therefore, the wave spectrum 

consists of four branches, and the frequency spectrum of three, as assumed. The essential 

qualitative distinction here is that which cannot assure a solution in the edge perturbation 

problem for any edge perturbations. 

In conclusion, we note that the proposed asymptotic analysis is applicable foranydegrees 

of approximation 4. Thus for a Ilp we arrive at asymptotic solutions relative to 1 m. 

REFERENCES 

1. DE VAULT, G. P. and CURTIS, C. W., Elastic cylinder with free lateral surface and mixed 

time-dependent end conditions, J. Acoust. Sot. Amer., Vo1.34, No.4, 1962. 

2. ZEMANEK, J., Jr., An experimental and theoretical investigation of elastic wave propaga- 

tion in a cylinder. J. Acoust. Sot. Amer., Vo1.51, No-l, Pt.2, 1972. 

3. KOSTIUCHENKO, A. G. and ORAZOV, M. G. Problems of the vibrations of an elastic semi- 

cylinder and associated self-adjoint quadratic bundles of operators. IN: Trudy, I. G. 

Petrovskii Seminar. Moscow Univ. Press, 1979. 

4. PROTSENKO, A. M., Wave propagation in a thin cylindrical shell, Izv. Akad. Nauk SSSR, 

Mekhan. Tverd. Tela, No.6, 1979. 

5. TIMOSHENKO, S. P. and WOINOWSKII-KRIEGER,S., Plates and Shells, Fizmatgiz, Moscow, 1963. 

6. TARTAKOVSKII, B. D. and MIKHAILOV, R. N., Vibrations of an infinite thin-walled cylindri- 

cal shell subjected to concentrated forces, IN: Vibrations, Radiation, and Damping of 

Elastic Structures. "Nauka", Moscow, 1973. 

7. LANCASTER, P., Matrix Theory, "Nauka", Moscow, 1978 (See also English translation,Pergamon 

Press, Book No. 11664, 1966). 

8. GANTMAKHER, F., Theory of Matrices, English translation, Vol.1 and 2, Chelsea, N.Y. 1973. 

Translated by M.D.F. 


